INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2021-22 Statistics - II, Final Examination, May 11, 2022

Answer all questions Maximum Marks: 50 Time: 3 hours

1. Let X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent random samples, respectively, from $N(\mu, 1)$ and $N(2\mu, 1)$, where $-\infty < \mu < \infty$ is the unknown parameter.

(a) Derive the most powerful (MP) test for testing $H_0: \mu = 0$ versus

 $H_1: \mu = 1$ at the significance level α .

(b) Is this also the uniformly most powerful (UMP) test for testing

 $H_0: \mu \leq 0$ versus $H_1: \mu > 0$ at the significance level α ? Justify? [9+6]

2. Let X have the p.d.f. $f(x|\theta) = \theta x^{\theta-1}, 0 < x < 1,$

where $\theta > 0$ is the unknown parameter.

(a) Find $I(\theta)$, the Fisher information number of θ contained in X.

Consider a sequence of i.i.d observations from the distribution of X.

(b) Compute the asymptotic relative efficiency of the MLE with respect to the method of moments estimator for estimating θ . [5+10]

3. X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$ where both μ and σ^2 are unknown; $-\infty < \mu < \infty, \sigma^2 > 0$.

(a) Derive the generalized likelihood ratio test (GLRT) for testing $H_0: \sigma^2 = 1$ versus $H_1: \sigma^2 \neq 1$ at the significance level α .

(b) Construct a $100(1 - \alpha)\%$ confidence interval for σ^2 . [7+3]

4. Suppose that X, the number of radio-active particles emitted by a source during unit time, has the Poisson distribution with parameter λ . Assume that the prior distribution on λ is Exponential with mean 1.

(a) Find the posterior distribution of λ if X = 1 is observed.

(b) How does one construct the $100(1 - \alpha)\%$ HPD credible interval for λ if X = 1 is observed? [6+4]